Surface guided electron FLASH radiotherapy for canine cancer patients

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,32 MB, PDF-dokument

  • Annika Mannerberg
  • Elise Konradsson
  • Malin Kügele
  • Anneli Edvardsson
  • Mustafa Kadhim
  • Crister Ceberg
  • Kristoffer Peterson
  • Hanna-Maria Thomasson
  • Arendt, Maja Louise
  • Børresen, Betina
  • Kristine Bastholm Jensen
  • Sofie Ceberg

BACKGROUND: During recent years FLASH radiotherapy (FLASH-RT) has shown promising results in radiation oncology, with the potential to spare normal tissue while maintaining the antitumor effects. The high speed of the FLASH-RT delivery increases the need for fast and precise motion monitoring to avoid underdosing the target. Surface guided radiotherapy (SGRT) uses surface imaging (SI) to render a 3D surface of the patient. SI provides real-time motion monitoring and has a large scanning field of view, covering off-isocentric positions. However, SI has so far only been used for human patients with conventional setup and treatment.

PURPOSE: The aim of this study was to investigate the performance of SI as a motion management tool during electron FLASH-RT of canine cancer patients.

METHODS: To evaluate the SI system's ability to render surfaces of fur, three fur-like blankets in white, grey, and black were used to imitate the surface of canine patients and the camera settings were optimized for each blanket. Phantom measurements using the fur blankets were carried out, simulating respiratory motion and sudden shift. Respiratory motion was simulated using the QUASAR Respiratory Motion Phantom with the fur blankets placed on the phantom platform, which moved 10 mm vertically with a simulated respiratory period of 4 s. Sudden motion was simulated with an in-house developed phantom, consisting of a platform which was moved vertically in a stepwise motion at a chosen frequency. For sudden measurements, 1, 2, 3, 4, 5, 6, 7, and 10 Hz were measured. All measurements were both carried out at the conventional source-to-surface distance (SSD) of 100 cm, and in the locally used FLASH-RT setup at SSD = 70 cm. The capability of the SI system to reproduce the simulated motion and the sampling time were evaluated. As an initial step towards clinical implementation, the feasibility of SI for surface guided FLASH-RT was evaluated for 11 canine cancer patients.

RESULTS: The SI camera was capable of rendering surfaces for all blankets. The deviation between simulated and measured mean peak-to-peak breathing amplitude was within 0.6 mm for all blankets. The sampling time was generally higher for the black fur than for the white and grey fur, for the measurement of both respiratory and sudden motion. The SI system could measure sudden motion within 62.5 ms and detect motion with a frequency of 10 Hz. The feasibility study of the canine patients showed that the SI system could be an important tool to ensure patient safety. By using this system we could ensure and document that 10 out of 11 canine patients had a total vector offset from the reference setup position <2 mm immediately before and after irradiation.

CONCLUSIONS: We have shown that SI can be used for surface guided FLASH-RT of canine patients. The SI system is currently not fast enough to interrupt a FLASH-RT beam while irradiating but with the short sampling time sudden motion can be detected. The beam can therefore be held just prior to irradiation, preventing treatment errors such as underdosing the target.

OriginalsprogEngelsk
TidsskriftMedical Physics
Vol/bind50
Udgave nummer7
Sider (fra-til)4047-4054
ISSN0094-2405
DOI
StatusUdgivet - 2023

Bibliografisk note

© 2023 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.

ID: 347106710