Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1. / Agerholm, Jørgen Steen; Menzi, Fiona; McEvoy, Fintan; Jagannathan, Vidhya; Drögemüller, Cord.

I: BMC Veterinary Research, Bind 12, 100, 2016.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Agerholm, JS, Menzi, F, McEvoy, F, Jagannathan, V & Drögemüller, C 2016, 'Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1', BMC Veterinary Research, bind 12, 100. https://doi.org/10.1186/s12917-016-0739-z

APA

Agerholm, J. S., Menzi, F., McEvoy, F., Jagannathan, V., & Drögemüller, C. (2016). Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1. BMC Veterinary Research, 12, [100]. https://doi.org/10.1186/s12917-016-0739-z

Vancouver

Agerholm JS, Menzi F, McEvoy F, Jagannathan V, Drögemüller C. Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1. BMC Veterinary Research. 2016;12. 100. https://doi.org/10.1186/s12917-016-0739-z

Author

Agerholm, Jørgen Steen ; Menzi, Fiona ; McEvoy, Fintan ; Jagannathan, Vidhya ; Drögemüller, Cord. / Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1. I: BMC Veterinary Research. 2016 ; Bind 12.

Bibtex

@article{08d0b9d31506475caa197d9da6f2bd56,
title = "Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1",
abstract = "Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5{\textquoteright}-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems. ",
author = "Agerholm, {J{\o}rgen Steen} and Fiona Menzi and Fintan McEvoy and Vidhya Jagannathan and Cord Dr{\"o}gem{\"u}ller",
year = "2016",
doi = "10.1186/s12917-016-0739-z",
language = "English",
volume = "12",
journal = "B M C Veterinary Research",
issn = "1746-6148",
publisher = "BioMed Central Ltd.",

}

RIS

TY - JOUR

T1 - Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1

AU - Agerholm, Jørgen Steen

AU - Menzi, Fiona

AU - McEvoy, Fintan

AU - Jagannathan, Vidhya

AU - Drögemüller, Cord

PY - 2016

Y1 - 2016

N2 - Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.

AB - Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.

U2 - 10.1186/s12917-016-0739-z

DO - 10.1186/s12917-016-0739-z

M3 - Journal article

C2 - 27296271

VL - 12

JO - B M C Veterinary Research

JF - B M C Veterinary Research

SN - 1746-6148

M1 - 100

ER -

ID: 162680117